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Systemic Oncolytic Cytokine HSV Therapy of Prostate Cancer 
Final report August 2008 Brent J. Passer (PI) 

 
INTRODUCTION 
 
Oncolytic HSV-based vectors selectively replicate in tumor cells causing direct killing ie., 
oncolysis, while at the same time sparing normal cells. To better assess the utility of 
oncolytic HSV vectors in treating prostate cancer, we have taken advantage of a 
transgenic mouse model system called TRAMP, which develops prostate cancer 
spontaneously and closely mirrors the progression of prostate cancer seen in humans. 
Overall, we have accomplished the majority of goals as outlined by the three specific 
aims of this grant. A manuscript entitled, “Systemic therapy of spontaneous prostate 
cancer in transgenic mice with oncolytic herpes simplex viruses” by Varghese et al. has 
been recently published in Cancer Research (see attached manuscript in appendices).  
Moreover, we have made significant strides in assessing the use of organotypic cultures 
derived from human prostate cancer specimens to study oncolytic HSV spread and 
replication. 
 
BODY  
 
Overall, we have demonstrated that:  

1. Inbred TRAMP mice displayed a consistent and predictable temporal pattern of 
prostate cancer progression, ie., low grade PIN (8 weeks) high grade PIN (10 
weeks),  prostate adenocarcinoma (12 weeks) and metastasis to the lungs (18 
weeks). (Aim 1) 

2. Systemic delivery of oncolytic NV1042 (expressing IL-12) replicates within 
prostate tumors as defined by β-gal staining and quantitative PCR of HSV gB 
sequence. (Aim 2) 

3. Oncolytic NV1023 and to a greater extent NV1042 vectors delivered systemically 
at 12 weeks of age promoted robust regression of prostate tumor growth by 24 
weeks of age. (Aim 2) 

4. NV1042 also diminished prostate tumor size even when delivered by 18 weeks of 
age (period of metastasis). (Aim 3) 

5. A significant reduction in the frequency of metastasis to the peri-aortic lymph 
nodes after administration of either NV1023 or NV1042 (Mock 86% as compared 
to NV1023 (14%) and NV1042 (25%). (Aim 3). 

6. A tendency toward a reduction of metastasis to the lungs by NV1042 and 
NV1023 treatments. Although this was not statistically significant. (Aim 3).   

7. NV1042 persistence within the tumor as defined by β-gal staining is different from 
senescence-associated β-gal activity, which can arise in prostate hyperplasia. 
(Aim 2). 

8. NV1042 persistence within the tumor as defined by β-gal staining is different from 
senescence-associated β-gal activity, which can arise in prostate hyperplasia. 
(Aim 2). 

9. Verifying by immunohistochemistry that anti-β-gal staining mirrored X-gal 
staining. (Aim 2). 

 
Recently, we noted major inconsistencies in prostate tumor sizes in TRAMP mice in 
untreated mice at 24 weeks of age. This makes interpretation of treatment conditions 
difficult and we are currently trying to rectify this problem.  While we believe that we have 



 

made major strides in better characterizing the utility of oHSV for prostate cancer in this 
transgenic model system, the lack of consistent tumor size has hampered ongoing and 
future-planned studies. We have continued to breed these mice in order to obtain 
consistent tumor sizes. In addition, we will continue to seek the expertise of our 
collaborator Dr. Petur Nielsen, a MGH pathologist.  

 
As discussed in last years progress report, we have also developed a novel 
complementary approach towards assessing the effectiveness of oncolytic HSV therapy 
in prostate cancer (not in the grant application but highly relevant). This experimental 
paradigm takes advantage of previously published work in which human prostate cancer 
biopsies can be easily maintained in vitro on a collagen sponge for 1-2 weeks 
(Nevalainen et al, 1993). The advantages of prostate tumor organ cultures are: (1) use 
of primary human prostate cancer biopsy material (as opposed to passaged prostate 
cancer cell cultures); (2) the three-dimensional structure remains intact (in contrast to 
typical monolayer cultures); (3) contains all the cell types present in the tumor; (4) 
contains 'normal' tissue/glands; (5) contains tumor foci at different stages of tumor 
progression; and (6) represents the genetic heterogeneity present within and between 
patients. Thus, factors that may affect viral entry and replication including cell-cell 
interactions and cell-matrix interactions remain preserved in this 3-dimensional milieu. 
Moreover, differences between prostate cancer cells, normal prostate gland cells, and 
interstitial cells can be explored.  Human prostate cancer specimens are obtained from 
Surgical Pathology, immediately transported to the laboratory, cut into 2-4 mm3 pieces, 
incubated with oHSV, and placed on semi-submersed collagen sponges in media (with 
or without) compound, where they remain viable for over 7 days (Figure 1). Eight to 
twelve samples can be obtained from a single specimen so that each treatment group 
contains multiple individual fragments and different treatment groups from a single 
patient.  
 
 
 
 
 
 
 
Figure 1. Prostate organ culture. Side-view of a 6-well plate containing prostate tumor 
fragments placed on a collagen sponge after being incubated with oncolytic HSV. 
 
As nectin-1 is one of the major entry receptors for HSV infection, we assess the tissue 
distribution of nectin-1 expression in these surgical specimens. IHC analysis clearly 
shows strong anti-nectin-1 staining on the epithelial cells in the prostate (Figure 2). 
These data suggest that oncolytic HSV’s likely infects the prostate epithelium via nectin-
1 receptors. Furthermore, we have compared tropism of G47Δ with that of the wild-type 
HSV strain F, from which G47d was derived in these prostate explants.  
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Figure 2. Human prostate cancer specimens express the HSV entry receptor nectin-1.  
Prostate specimens sections where either stained with a rabbit serum (Neg. Control) or 
the rabbit anti-nectin-1 antibody (R166; gift from Dr. Claude Krummenacher, Univ. of 
Pennsylvania). Thereafter, tissues were incubated with an anti-rabbit secondary 
antibody conjugated to horseradish peroxidase and followed by to reveal the expression 
of nectin-1. Note that the majority of nectin-1 staining appears located on the epithelial 
cells. (50x)  
 
Analysis of prostate specimens infected with G47Δ at days 3 and 5 post-infection by 
either X-gal staining (ICP6 gene has been replaced by LacZ) or by immunostaining with 
anti-HSV glycoprotein C (gC) antibody shows that G47Δ specifically targets the epithelia 
of the prostatic ducts but spares the surrounding stroma. This was confirmed by 
immunostaining serial sections with cytokeratin 18, which specifically stains epithelial 
cells (Figure 3A).  By d5, these ducts appeared extensively damaged presumably due 
to the oncolytic activity of G47Δ. While G47Δ appears restrictive in its pattern of 
infectivity and spread, ie.,prostate epithelial cells, anti-gC staining on tissues infected 
with wild-type strain F showed staining not only of epithelia but also the surrounding 
stroma (Figure 3B). This analysis demonstrates that wild-type HSV is promiscuous in 
nature to infect and spread in the in human prostate tissue. 
 
 
A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. 
 
 
 
 
 
 
 
Figure 3. Oncolytic G47Δ specifically targets the prostatic ducts of human prostate 
cancer biopsies.  (A) Prostate cancer specimens were treated with G47Δ and day 3 and 
5 post-infection, tissues were fixed and sectioned. Tissues sections were stained with X-
gal (blue) or stained with the anti-HSV glycoprotein C (gC) antibody. In addition, serial 
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sections were immunostained with anti-cytokeratin18 (brown) to demarcate the prostate 
epithelial cells within the ducts and to demonstrate that G47Δ infection overlaps with 
cytokeratin 18-expressing cells. Tissues sections were also counterstained with 
hematoxylin. Note the cauterized-like appearance of the prostatic ducts at D5 and the 
lack of B-gal+ cells in the surrounding stroma. (B) Similar experiments were performed 
with wild-type Strain F and serial sections were stained with either anti-HSV gC (left and 
middle right panels) and anti-cytokeratin 18 (middle left and right panels). Note that HSV 
gC expression is also found in cyto18-negative areas.   
 
 
Finally, we also compared the replication capacity of oncolytic G47Δ, G207 as well as 
wild-type strain F in these organ cultures (Figure 4). G47Δ is derived from G207 by a 
deletion within the nonessential α47 gene. Because of the overlapping transcripts 
encoding ICP47 and US11, the deletion in α47 also places the late US11 gene under 
control of the immediate-early α47 promoter. This alteration of US11 expression 
enhances the growth of γ34.5 − mutants by precluding the shutoff of protein synthesis 
(Todo et al., 2001). To this end, tissues were infected with one of the three viruses (1-
2x106 pfu) and 5 days post-infection, tissues derived from these cancer specimens (n=6) 
were titered on Vero cells. This analysis shows that G47Δ was at least log10 more 
effective that G207. By contrast, strain F was more robust than either one of these 
vectors in its ability to replicate in these prostate tissues.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Oncolytic HSV’s replicates in prostate organ cultures. At 5 days post-infection, 
organ cultures were removed from the collagen-sponge, extensively homogenized and 
titered onto Vero cells. The vertical axis is in pfu/mg human prostate tissue. Each color 
dot indicates a different prostate surgical specimen which was separately infected with 
one of the three indicated viruses (n=6). Although viral input ranged from ~30,000-
100,000 pfu/mg of prostate tissue, the actual infectivity by oHSV is likely to be much 
less.   
 
KEY RESEARCH ACCOMPLISHMENTS 
 
• Addressed key questions from all three specific aims.  
• Manuscript to Cancer Research has been published 
• Reported on a novel complementary approach towards addressing the effectiveness and 

specificity of oncolytic HSV vectors in prostate cancer.  
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REPORTABLE OUTCOMES 
 
1. Varghese S, Rabkin SD, Nielsen GP, MacGarvey U, Liu R, Martuza RL. Systemic 
therapy of spontaneous prostate cancer in transgenic mice with oncolytic herpes simplex 
viruses. Cancer Res. 2007, 67:9371-9. 
 
CONCLUSIONS 
 
In conclusion, we demonstrated that systemic administration of oncolytic HSVs, in 
particular the IL-12 expressing NV1042 virus, is effective against primary prostate 
tumors as well as metastatic tumors independent of their location.  These desirable 
therapeutic features of NV1042 render it a highly valuable agent either as a primary 
treatment option or as an adjuvant approach following surgery to eliminate 
micrometastases.  
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Abstract

Oncolytic viruses are an innovative therapeutic strategy for
cancer, wherein viral replication and cytotoxicity are selective
for tumor cells. Here we show the efficacy of systemically
administered oncolytic viruses for the treatment of spontane-
ously arising tumors, specifically the use of oncolytic herpes
simplex viruses (HSV) administered i.v. to treat spontaneously
developing primary and metastatic prostate cancer in the
transgenic TRAMP mouse, which recapitulates human pros-
tate cancer progression. Four administrations of systemically
delivered NV1023 virus, an HSV-1/HSV-2 oncolytic recombi-
nant, to TRAMP mice at 12 or 18 weeks of age (presence of
prostate adenocarcinoma or metastatic disease, respectively)
inhibited primary tumor growth and metastases to lymph
nodes. Expression of interleukin 12 (IL-12) from NV1042 virus,
a derivative of NV1023, was additionally effective, significantly
reducing the frequency of development of prostate cancer and
lung metastases, even when the mice were treated after the
onset of metastasis at 18 weeks of age. NV1042-infected cells,
as detected by 5-bromo-4-chloro-3-indolyl-B-D-galactopyrano-
side staining for Lac Z expressed by the virus, were present
in prostate tumors 1 week after the final virus injection and
viral DNA was detected at 2 weeks after final virus injection
by real-time PCR in primary and metastatic tumors but not in
liver or blood. No toxicity was observed in any of the treated
mice. The efficacy of the IL-12–expressing NV1042 virus in
this aggressive prostate cancer model using a clinically rele-
vant treatment paradigm merits its consideration for clinical
studies. [Cancer Res 2007;67(19):9371–9]

Introduction

Oncolytic viruses designed to differentially target cancer cells
while sparing normal tissues have advanced in the past decade to
the forefront of innovative strategies for cancer treatment (1, 2).
Since the conception in 1991 of using mutated herpes simplex virus
(HSV), a neurotropic virus, to treat brain tumors (3), the unique
biology of HSV coupled with genetic manipulation techniques
has greatly aided in the development of more potent HSV vectors
while conferring safety and specificity (4). Currently, four oncolytic
HSV vectors, G207, HSV 1716, NV1020, and OncovexGM-CSF, deli-

vered intracerebrally, intraneoplastically, or intra-arterially, have
successfully completed phase I clinical trials (4–6). These and
other oncolytic HSVs have been efficacious in treating a variety
of cancers in animal models (4, 7). In addition to their direct
tumoricidal effect, oncolytic herpes viruses are also capable of eli-
citing an antitumor immune response (8–10), an important feature
when treating metastatic tumors, especially those that are clinically
occult.

Accumulating evidence suggests that oncolytic HSVs are
potentially useful for treating prostate cancer: (a) G207, a multi-
mutated herpes simplex virus-1 (HSV-1; ref. 11), is safe when
administered into the prostate in preclinical animal models, and
is a nerve-sparing virus (12, 13). This overcomes a current chal-
lenge of conventional treatments such as surgery and radiation
therapy, which are associated with risks of nerve damage. (b)
Oncolytic HSV mutants, including G207 and NV1020, have shown
efficacy against human prostate cancer xenografts and mouse
prostate cancers following intraneoplastic or i.v. administration
(14–17). (c) G207 and other vectors are effective against human
prostate cancer irrespective of hormone status or radiosensitivity
(14, 16, 18)—a major advantage in its application for advanced
forms of the disease in which hormone- and radiation-refractory
tumor is an inevitable progression.

To date, however, all efficacy studies with HSV vectors for
prostate cancer have used implanted tumor models, which are
artificial systems with respect to their milieu and lymphovascular
supply. Whereas these implanted models are easily amenable to
therapeutic manipulation, they do not truly reflect the in situ
cancer situation and may affect the outcome of the therapy being
investigated. Genetically engineered mouse models that develop
prostate cancer spontaneously are currently the most representa-
tive models to conduct efficacy studies. Therefore, we have used
the transgenic TRAMP mouse, which develops prostate cancer
spontaneously with progression to metastatic disease (19, 20). In
TRAMP mice, the rat probasin promoter regulated by androgens
drives SV40 T antigen expression, restricting its expression to
epithelial cells of the prostate. Histologic progression of prostate
cancer in TRAMP mice closely recapitulates that of humans, with
the development of prostatic intraepithelial neoplasia (PIN) by
8 weeks of age, prostate carcinoma by 12 weeks, and metastatic
cancer in periaortic lymph node and lungs by 18 weeks of age (20).

As a prelude to the studies in TRAMP mice, we examined the
efficacy of G207, NV1023, and NV1042 against s.c. and metastatic
lung tumors using the TRAMP-C2 prostate cancer cell line, which
was established from a spontaneously occurring prostate adeno-
carcinoma of a TRAMP mouse (19). NV1023 is derived from
NV1020, which has been in clinical trial for metastatic colon cancer
to the liver and has deletions of one copy of c34.5, the internal
repeat, and UL24 and UL56 genes, as well as the addition of gJ, gG,
US2, and US3 genes from HSV-2 (21, 22). NV1023 has an additional

Note: S.D. Rabkin and G.P. Nielsen contributed equally to this work. Current
address for R. Liu: The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou,
P.R. China.
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Massachusetts General Hospital, WHT-502, 55 Fruit Street, Boston, MA 02114.
Phone: 617-726-8581; Fax: 617-726-4814; E-mail: rmartuza@partners.org.
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insertion of LacZ and deletion of ICP47, US11, and US10 genes (21).
Comparison of efficacy in s.c. or metastatic lung TRAMP-C2
tumors showed that the murine interleukin 12 (IL-12)–expressing
NV1042 virus was superior to its parent, NV1023, and G207 (17, 23).
We also showed that IL-12 expression from NV1042 resulted in
both immune and antiangiogenic effects (17, 23).

Based on the above findings, we investigated the utility of
systemically administered NV1023 and NV1042 to treat spontane-
ously arising prostate cancer andmetastasis in TRAMPmice. Results
show that both NV1023 and NV1042 significantly inhibited the
growth of primary tumors in prostate and metastasis in periaortic
lymph nodes. NV1042 was additionally effective in reducing the
frequency of the development of prostate carcinoma and lung
metastasis.

Materials and Methods

Mice. TRAMP (C57Bl/6 background) breeder pairs ( female TRAMP and
male C57Bl/6) were purchased from The Jackson Laboratory and bred in-
house at the Center for Comparative Medicine facility at Massachusetts
General Hospital. Female transgenic F1 pups were crossed with male FVB/N
mice obtained from National Cancer Institute to generate TRAMP mice on

an FVB/N background. The pups were genotyped at 3 weeks of age using
SV40 large T antigen primers (5¶-CAGAGCAGAATTGTGGAGTGG-3¶ and
5¶-ACAAACCACAACTAGAATGCAGTG-3¶) for PCR of tail genomic DNA
isolated using phenol-chloroform extraction (24). F1 male TRAMP mice
obtained from this cross-breeding were used for all experiments described

below. Mice were housed in a pathogen-free facility and all animal
procedures were conducted with approval from Massachusetts General
Hospital Subcommittee on Research Animal Care. All animal studies were
blinded.

Viruses. Purified virus stocks of NV1023 and NV1042 were obtained from

MediGene, Inc. Construction of NV1023 and NV1042 has previously been
described (21). NV1023, derived from NV1020 (R7020), a HSV-1/HSV-2

intertypic recombinant developed as a vaccine strain (22), contains an

insertion of LacZ into the ICP47 locus, deleting ICP47, US11, and US10 (21).

NV1042 is NV1023 with an insertion of murine IL-12 cDNA (p35 and p40
as a single polypeptide separated by elastin motifs) expressed from a

hybrid a4-TK promoter (21). The viruses were individually titered on Vero

(African green monkey kidney) cells by plaque assay. NV1042-infected

TRAMP-C2 cells secreted 52 ng/mL of IL-12 (17).
Virus treatment and efficacy evaluation. Twelve-week-old (n = 8–9

per group) or 18-week-old (n = 17 per group) male TRAMP mice were

inoculated via tail vein with 2 � 107 plaque-forming units (pfu) of NV1023
or NV1042 or virus buffer consisting of 10% glycerol in PBS (mock) in a

200-AL volume on days 0, 3, 7, and 10. By day 14 after initiation of treatment,

anti-HSV serum antibody was detectable (data not shown). Mice were

monitored biweekly and sacrificed if morbid. At 24 weeks, all mice
were sacrificed, terminating the experiment. Prostate and seminal vesicles

were removed en bloc, weighed, and photographed. Formalin-fixed sections

of prostate, periaortic lymph nodes, and lungs were evaluated by H&E

staining and the frequency of carcinoma was scored in a blinded manner by
the collaborating pathologist (G.P.N.). Histologic grading of prostate samples

was done as previously published (25).

Virus biodistribution studies. TRAMP mice were treated with 2 � 107

pfu of NV1042 on days 0, 3, 7, and 10. Mice were sacrificed at predetermined
days and various tissues were evaluated for b-galactosidase by 5-bromo-4-

chloro-3-indolyl-h-D-galactopyranoside (X-gal) staining and immunohisto-

chemistry and for the presence of HSV-1 DNA by real-time PCR.
b-Galactosidase staining. Tissue cryostat sections of prostate and

seminal vesicles, periaortic lymph nodes, lung, liver, and brain obtained

from three mice each sacrificed on days 11, 13, and 17 (or 1, 3, and 7 days

after the final treatment) were analyzed by X-gal staining at pH 7.2, as
previously described. For senescence-associated h-galactosidase staining,

we carried out X-gal histochemistry at pH 6.0 (26). Sections were coun-

terstained with eosin or H&E. For immunohistochemistry, sections were

washed with 0.2% Triton X-100 in PBS, 0.3% hydrogen peroxide in PBS,
1% and then 10% goat serum in PBS; incubated with rabbit anti–E. coli

h-galactosidase (1:1,000; Abcam, Inc.) overnight at 4jC; washed in PBS; and

incubated with biotinylated goat anti-rabbit immunoglobulin G (Vector

Laboratories). Immunoreactive material was detected with Vectastain Elite
ABC and diaminobenzidine kits (Vector Laboratories).

Real-time PCR. NV1042-treated mice were sacrificed on days 11, 13, and

24 (or 1, 3, and 14 days after the final treatment) and various tissues

(prostate and seminal vesicles, periaortic lymph nodes, lung, liver, brain,
and blood) were removed aseptically and immediately snap frozen on dry

ice with isopentane. Tissues were resuspended in nucleic acid lysis buffer

(Applied Biosystems) and homogenized using a Mixer Mill (Qiagen). Total

DNA was extracted from the homogenate using ABI Prism 6100 Nucleic
Acid PrepStation (Applied Biosystems). Absolute quantification of viral DNA

was conducted by real-time TaqMan PCR using HSV-1 gB primer sequences

( forward primer, 5¶-TGTGTACATGTCCCCGTTTTACG-3¶; reverse primer,
5¶-GCGTAGAAGCCGTCAACCT-3¶; probe, 5¶-ACACCAGCTACGCCGCC-3¶)
synthesized using Assays-by-Design service (Applied Biosystems). Mouse

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primers (Applied

Biosystems) were used as endogenous control for input DNA. Strain F
genomic DNA served as positive control and was used to generate a

standard curve from 15 to 2.4 � 105 copies.

Statistical analysis. Statistical analyses were conducted by comparing

NV1023- or NV1042-treated mice groups with mock, or NV1023-treated with
NV1042-treated mice group. Because the experimental data of prostate

tumor weight from the efficacy studies did not follow a normal Gaussian

distribution, nonparametric Mann-Whitney tests (two-tailed) were used to
analyze significance between treatment groups. The frequency of carcinoma

in prostate, periaortic lymph node, and lungs between treatment groups

was conducted by contingency analysis using Fisher’s exact two-sided test.

Kaplan-Meier survival data were analyzed using m2 log-rank test. a levels
for all analyses were P < 0.05; n values and exact P values are indicated in

the text and legends. All statistical analyses were done using GraphPad

Prism v.4.

Results

Spontaneous primary and metastatic prostate cancer
development. Because the TRAMP mice were bred in-house, we
determined the time line of prostate cancer and metastasis
development before using them in viral therapy studies by anal-
yzing 125 male transgenic TRAMP mice, and observed reproduc-
ibility with tumor development and progression. As illustrated in
Fig. 1, TRAMP mice on the FVB/N background display PIN by
8 weeks of age, which progresses to carcinoma by 12 weeks and to
metastases in periaortic lymph nodes and lung by 18 weeks of age.
For comparison, histology of normal prostate from a nontransgenic
littermate is shown. Systemic treatment with NV1023 or NV1042
was initiated at an age when mice first exhibit either primary
prostate carcinoma (12 weeks) or metastasis (18 weeks). The mice
were sacrificed at 24 weeks of age when untreated mice become
moribund from disease.
Efficacy of systemic oncolytic HSV therapy on primary

prostate cancer. Mouse cells are more resistant to HSV infection,
and in our prior studies with implanted mouse prostate TRAMP-C2
cells in C57Bl/6 mice, we had noted that four intraneoplastic
injections were significantly more effective than two treatments
(17). Additionally, with TRAMP-C2 tumors metastatic to lung, we
had observed that four i.v. administrations were significantly
effective in inhibiting the growth of the tumors. Therefore, in this
study using the spontaneous tumor model, four doses of 2 � 107

pfu of NV1023 or NV1042, or virus buffer, were administered i.v. on
days 0, 3, 7, and 10 to 12-week-old TRAMP mice (n = 8–9 per
group). The results show a substantial inhibition of primary

Cancer Research

Cancer Res 2007; 67: (19). October 1, 2007 9372 www.aacrjournals.org



prostate cancer growth in virus-treated mice when compared with
mock mice as illustrated in the gross photograph (Fig. 2A). Because
multifocal tumors also arise in the seminal vesicles of these mice
and often coalesce with the prostate gland by sacrifice (24 weeks),
the carcinomatous mass containing both prostate and seminal
vesicles was excised as one unit and weighed. Distribution of
prostate and seminal vesicle tumor weights (Fig. 2B) illustrates
that mock-treated mice harbored tumors with a mean weight of
10.17 g, NV1023 with 3.98 g (P = 0.026, versus mock, Mann-Whitney
test), and NV1042 with 2.79 g (P = 0.003, versus mock, Mann-
Whitney test). For comparative purposes, the average weight of
prostate and seminal vesicles from nontransgenic TRAMP mice is
0.78 g. In this experiment, two of nine mice from both the mock-
and NV1023-treated groups died within 2 days of the 24-week
sacrifice and one mouse from the NV1042 group died 1 week after
treatment (at f14 weeks of age). Histologic analysis of prostates
from these dead mice showed that those from the mock and
NV1023 treatment groups had large prostate tumors comprising of
carcinoma, whereas the single NV1042-treated mouse did not
display any evidence of cancer and therefore likely died from
unrelated causes. H&E analysis of prostates showed consistent
histologic grades among the treatment groups and included glands
with normal histology, PIN, and invasive carcinoma of undifferen-
tiated type. Whereas 8 of 9 (89%) mock mice had progressed to
undifferentiated invasive carcinoma, only 6 of 9 (67%) NV1023-
treated and 2 of 8 (25%) NV1042-treated mice (P = 0.015, versus
mock, Fisher’s exact test) progressed to invasive carcinoma (Table 1).
Correspondingly, PIN was the highest grade observed in the
prostates of 3 of 9 (33%) NV0123-treated and 5 of 8 (63%) NV1042-
treated mice, suggesting an inhibition of tumor progression in
these treated mice. Thus, whereas both NV1023 and NV1042 were

equally effective in inhibiting the growth of primary tumors
(as assessed by tumor weight) when treated at 12 weeks, only
NV1042 was effective in inhibiting tumor progression (as assessed
by histologic grading) compared with mock or NV1023. Represen-
tative H&E-stained prostates, based on the most frequently
observed histologic stage, from various treatment groups are
illustrated in Fig. 2C . The largest tumors were highly necrotic (seen
as pink areas in Fig. 2C , mock) with islands of tumor cells closely
apposed to blood vessels within the necrotic areas.

Both NV1023 and NV1042 also inhibited primary prostate tumor
growth as compared with mock treatment in mice treated at 18
weeks of age (n = 17 per group), when they begin to exhibit
metastasis (Fig. 3A). There was a significant difference in the
number of animals surviving to 24 weeks, with 8 of 17 mock dying
or being sacrificed between 22 and 24 weeks due to tumor burden,
as compared with 3 of 17 NV1023 and 2 of 17 NV1042 (P = 0.03,
NV1042 versus mock, m2 log-rank test). All of these mice harbored
carcinoma within the prostate as determined by histologic analysis.
Comparison of prostate and seminal vesicles weights in mice
sacrificed at 24 weeks (Fig. 3B) shows a mean weight of 12.25 g in
mock versus 6.54 g in NV1023 (P = 0.04 versus mock; Mann-
Whitney test) and 3.66 g in NV1042 (P = 0.002, versus mock, Mann-
Whitney test). Histologic analysis revealed that 16 of 17 (94%)
mock mice, 13 of 17 (76%) of NV1023, and 10 of 17 (59%) of NV1042
(P = 0.039, versus mock, Fisher’s exact test) harbored invasive
carcinoma, which were either well-differentiated adenocarcinoma
or undifferentiated carcinoma (Table 1). Treatment at 18 weeks of
age also resulted in inhibition of tumor progression within the
prostate gland, with 35% of NV1042-treated mice displaying PIN as
the highest grade without any advancement to carcinoma. Thus,
when treated at 12 or 18 weeks, only NV1042 was effective in

Figure 1. Spontaneous primary and metastatic prostate cancer development in TRAMP mice. A normal prostate gland from a nontransgenic male littermate (left).
Time line of primary prostate and metastatic cancer development in TRAMP mice starting at 8 wk of age when they develop PIN, progressing to invasive
adenocarcinoma by 12 wk of age. Metastasis in periaortic lymph node and lung are observed by 18 wk of age.
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inhibiting tumor growth within the prostate (as measured by
prostate weight) and development of invasive carcinoma (as
assessed by histologic grading).
Efficacy of systemic oncolytic HSV therapy on metastasis.

Treatment of TRAMP mice with NV1023 or NV1042 at 12 weeks of

age, when they begin to develop prostate carcinoma, resulted in a
significant reduction of metastatic frequency in periaortic lymph
nodes from 86% in mock-treated to 14% in NV1023-treated mice
(P = 0.03, versus mock, Fisher’s exact test) and to 25% in NV1042
(P = 0.04, versus mock, Fisher’s exact test). Whereas there was a

Table 1. Frequency of prostate lesions and metastatic cancer in TRAMP mice treated with oncolytic HSVs

Site/histology Treatment at 12 wk of age, n (%) Treatment at 18 wk of age, n (%)

Mock

(n = 7s + 2d)

NV1023

(n = 7s + 2d)

NV1042

(n = 8s)

Mock

(n = 9s + 8d)

NV1023

(n = 14s + 3d)

NV1042

(n = 15s + 2d)

Prostate—normal 1/8 (12.5) 1/17 (6)

Prostate—PIN 1/9 (11) 3/9 (33) 5/8 (63) 1/17 (6) 4/17 (24) 6/17 (35)
Prostate—invasive carcinoma: well-differentiated

adenocarcinoma

1/17 (6) 1/17 (6)*
c

Prostate—invasive carcinoma: undifferentiated 8/9 (89) 6/9 (67) 2/8 (25)* 16/17 (94) 12/17 (71) 9/17 (53)*
c

Periaortic lymph node carcinoma 6/7 (86) 1/7 (14)* 2/8 (25)* 8/9 (89) 6/14 (43)* 5/15 (33)*
Lung carcinoma 4/7 (57) 1/7 (14) 1/8 (12.5) 5/9 (56) 5/14 (36) 1/14 (7)*

NOTE: NV1023 or NV1042 (2 � 107 pfu) or virus buffer (mock) was administered systemically on days 0, 3, 7, and 10 in TRAMP mice at either 12 or

18 wk of age. Mice were sacrificed at 24 wk and various tissues were processed for H&E staining and histologically graded. N values are shown in
parentheses under each group (s, number of mice sacrificed at 24 wk of age; d, number of mice dead before 24 wk of age).

*P < 0.05, versus mock.
cCombined total of the two types of invasive carcinoma for statistical analysis.

Figure 2. Efficacy of systemic oncolytic
virus in TRAMP mice treated at 12 wk of
age. A, photograph of representative
prostate and seminal vesicles excised
en bloc from various treatment groups
illustrating prostate tumors. B, distribution
of weights of prostate and seminal vesicles
(SV ) from mock (n = 7), NV1023 (n = 7),
and NV1042 (n = 8). Mean is denoted by
the line; mean weight F SE for each group
are as follows: mock, 10.17 F 1.68 g;
NV1023, 3.98 F 1.39 g (P = 0.026, versus
mock, Mann-Whitney test); NV1042,
2.79 F 0.91g (P = 0.0037, versus mock,
Mann-Whitney test). Mice dying before
week 24 were not included in the analysis.
C, H&E staining of prostates from
mock-treated, which shows larger areas
of necrosis, NV1023-treated, and
NV1042-treated mice.
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reduction in metastatic frequency in the lungs, it was not sig-
nificant (Table 1).

To examine whether oncolytic viral therapy could treat
metastasis after their onset, TRAMP mice were treated at 18
weeks of age and sacrificed 6 weeks later at 24 weeks (Table 1). A
significant reduction in frequency of metastasis to the periaortic
lymph nodes was observed with NV1023 (P = 0.04, versus mock,
Fisher’s exact test) and NV1042 (P = 0.013, versus mock, Fisher’s
exact test), similar to the observations for treatment at 12 weeks
of age. Interestingly, when scored for lung metastasis, a significant
reduction was observed in the NV1042-treated mice, with only 1
of 14 (7%) mice exhibiting carcinoma (P = 0.014, versus mock,
Fisher’s exact test) as compared with 5 of 9 (56%) mock-treated and
5 of 14 (36%) NV1023-treated mice.
Virus biodistribution in NV1042-treated mice. Both NV1023

and NV1042 harbor the E. coli Lac Z gene, which acts as a reporter
to track these viruses following systemic administration. TRAMP
mice treated for 12 weeks with four doses of 2 � 107 pfu of i.v.
NV1042 were sacrificed 1, 3, and 7 days after the last treatment,
and various tissues (prostate, lung, liver, and brain) were removed
for X-gal staining. Results as illustrated in Fig. 4A show that 1 day
following the final virus injection, X-gal staining was observed in a
few isolated cells in the liver and lung and none in the brain (brain
data not shown). However, by days 3 and 7, no staining was
observed in the lungs, liver, or brain, whereas in the prostate,
significant amounts of staining were detected. Thus, systemically

administered NV1042 was able to persist at least for 7 days after
treatment in the cancerous prostates but not in the normal organs.
X-gal staining seen in hyperplastic glands on day 1 was distinct
from senescence-associated h-galactosidase (Fig. 4C) that has been
reported in prostate hyperplasia (27, 28). To further confirm that
X-gal histochemistry was identifying LacZ-expressing cells, immu-
nohistochemistry-positive cells were seen in the same region as
X-gal–staining cells (Fig. 4B).

Biodistribution of NV1042 in 18-week-old TRAMP mice treated
systemically on days 0, 3, 7, and 10 was assessed by real-time PCR
using HSV gB sequences. DNA was isolated from organs (prostate
and seminal vesicles, periaortic lymph nodes, lung, liver, brain,
and blood) harvested on days 11, 13, and 24. Results shown in
Fig. 5 illustrate that viral DNA was detected until day 24 (last day
tested) in those organs that harbor primary and metastatic cancers
(prostate, periaortic lymph nodes, and lungs). In contrast, whereas
many viral copies were detected in the liver and blood on day 1, the
level decreased to nondetectable (negative) by day 24, suggesting
clearance of virally infected cells or degradation of viral DNA.
No viral DNA was detected in the brain of any animal on any day
tested.

Discussion

Prostate cancer in TRAMP mice arises from the targeted
expression of SV40 T antigen within the epithelial cells of the
prostate (19) and is influenced by the local prostate milieu. Studies
using TRAMP mice would therefore be expected to be superior to
implanted tumor models for a number of reasons: (a) Unlike
implanted tumors generated from cultured cells, which are usually
of a homogenous clonal phenotype, prostate tumors in TRAMP
mice arise multifocally and are heterogeneous in nature, similar to
the clinical situation. Such differences make treatment of these
multiclonal autochthonous TRAMP tumors more difficult as
opposed to implanted tumors. (b) Cells grown in vitro tend to
accumulate additional alterations distinct from the original tumor,
potentially influencing the outcome of therapies, thus affecting
clinical translation. In contrast, evaluation of autochthonous in situ
tumors would minimize such external influences. (c) In situ
prostate cancer development as observed in TRAMP mice is a
dynamic process between transformed cells and the surrounding
stroma and vasculature (29–31), whereas implanted tumors are in
an artificial environment with respect to stroma, vasculature, and
lymphatic supply, and therefore may respond to therapies more
effectively, especially when initiated at a short interval after
implantation when the tumor and local stromal cells have not
become responsive to one another.

The TRAMP mice used in this study were bred on a FVB/N
background. We also attempted to breed the TRAMP mice
obtained from The Jackson Laboratory on a C57Bl/6 background,
but none of the 250+ F1 mice advanced from prostate adenoma to
carcinoma even at death, which varied from 40 to 52 weeks. This
lack of carcinoma development in the C57Bl/6 background is at
variance with the original report of TRAMP mice (20) but could be
attributed to genetic polymorphisms (32) or dietary and environ-
mental influences (33, 34). Nevertheless, when the F1 pups from the
C57Bl/6 background were crossed with the FVB/N background, the
pups from this cross simulated the time line of prostate cancer
progression reported previously (35). Even these TRAMP � FVB/N
pups exhibited variations in cancer development that differed from
previous reports: (a) a majority (f75%) of our mice survived only

Figure 3. Efficacy of systemic oncolytic virus in TRAMP mice treated at 18 wk
of age. A, photograph of representative prostate and seminal vesicles
excised en bloc from various treatment groups illustrating prostate tumors.
B, distribution of weights of prostate and seminal vesicles from each treatment
group. Mean is denoted by the line in each group; mean weight F SE for
each group are as follows: mock, 12.25 F 2.3 g; NV1023, 6.54 F 1.20 g
(P = 0.04, versus mock, Mann-Whitney test); NV1023, 3.66 F 0.72 g (P = 0.002,
versus mock, Mann-Whitney test).
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until 25 weeks as opposed to a previously reported range of 24 to
39 weeks (36); (b) none of the 80 mice more than 18 weeks of age
displayed bone metastases (20), which may have been due to our
inability to detect the occasional incidence of bone metastasis
reported in these mice. We also observed some litter/cohort
variation, which included (a) the rate of penetrance of prostate
carcinoma, with some cohorts displaying 100% penetrance whereas
others showing less (90%), and (b) the survival rate of mice to
24 weeks (as described in the results), with 22% death in the
12-week-old treatment experiment and 47% in the 18-week-old
treatment experiment. Such variations highlight the difficulty in
conducting treatment studies with spontaneous tumor models,
and in fact, most of the literature using TRAMP mice has focused
on prevention as opposed to treatment studies (37).

Viruses were administered systemically in this study for several
reasons: (a) Because we had chosen a regimen of four treatments

with the viruses based on our prior studies (17), repeated lapa-
ratomies for virus delivery into the prostate would have greatly
increased the risk of procedure-related toxicity. (b) Systemic
administration would be the most effective method to reach
various metastatic sites. (c) I.v. administration is much more
amenable than a surgical procedure from a translational perspec-
tive. In this study, NV1042-infected cells were detected within pro-
state tumors and viral DNA was detected in the cancerous
prostates, periaortic lymph nodes, and lungs, suggesting that
systemically administered virus reached and persisted in tumor-
bearing organs but not in normal organs. Multiple injections of
virus did not seem to be toxic, and tumor progression accounted
for observed morbidity.

Both NV1023 and NV1042 treatment of TRAMP mice resulted
in a significant reduction of primary prostate tumor weight
irrespective of the age (12 or 18 weeks) at which treatment was

Figure 4. Biodistribution of NV1042 virus following i.v. injection of 12-week-old TRAMP mice. A, tissues harvested 1, 3, and 7 d after four viral injections were
sectioned and stained with X-gal to detect LacZ expression from the virus. Top, sections from prostate, liver, and lungs obtained from mice sacrificed 1 d after
treatments showing areas of staining in prostate glands with low-grade PIN and a few X-gal–positive cells in liver and lung (arrows ); middle , tissues from 3 d after
virus injections showing X-gal staining in prostate but not in liver; bottom, only prostate tissue stained at 7 d after virus injections. B, prostate tumor sections from a
different mouse at 7 d after virus injections stained with X-gal (left) and anti–h-galactosidase antibody (right ). Note the overlapping LacZ immunohistochemical
and X-gal histochemical staining (open arrowheads ) from nearby sections. C, senescence-associated h-galactosidase staining in mock-treated prostate tumors.
Frozen prostate sections from a mock-injected TRAMP mouse at 12 wk (as in A) were histochemically stained at the same time for senescence-associated
h-galactosidase (SA-b-gal ; left) and X-gal (right ). Cells staining blue are positive. Senescence-associated h-galactosidase was not detected in high-grade PIN or
adenocarcinoma. In one mock-treated mouse, small clusters of positive-staining cells were seen in prostate tumors after X-gal histochemistry, likely due to endogenous
activity (48).
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initiated; however, only NV1042 was effective in inhibiting the
progression from PIN to invasive prostate carcinoma. Both NV1023
and NV1042 also significantly inhibited the frequency of metastasis
in periaortic lymph nodes independent of the age (12 or 18 weeks)
at which treatment was initiated; however, again, only NV1042 but
not NV1023 was significantly effective against metastasis in the
lung when treated after the onset of metastasis at 18 weeks of age.
Thus, whereas both NV1023 and NV1042 viruses were equally
effective against primary tumor growth, only NV1042, and not
NV1023, significantly inhibited the progression of primary and
metastatic cancer compared with mock. This is an important
outcome in determining which virus would be more effective for
therapy because mortality in prostate cancer patients is associated
with progression to metastatic disease.

We have previously compared the efficacies of NV1042 and
NV1023 in s.c. and lung metastatic models using implanted
TRAMP-C2 tumor cells and observed varying results, with NV1042
more efficacious in extending survival than NV1023 in the
metastatic lung tumor compared with the s.c. model, although
the s.c. tumors were directly injected. In the bilateral s.c. tumor
model, NV1042 had only a minimal effect on noninoculated tumor
growth (17) whereas in the metastatic lung model the enhanced
efficacy of NV1042 over NV1023 was abrogated in athymic mice
(23). NV1042 has previously been shown to be significantly better
than NV1023 at inhibiting tumor growth in squamous cell, hepatic,
and colorectal carcinomas (21, 38, 39). Augmented efficacy of
IL-12 expression in other oncolytic HSV vectors has also been
reported (40, 41).

NV1042 was significantly more effective than mock in the
TRAMP mice in almost all of the outcomes measured, whereas
NV1023 was only significantly better in less than half. Reasons for
the absence of a more significant difference between NV1042 and
NV1023 in this study as compared with prior studies (17, 18)
include the following: (a) Nature of the tumor type: As compared
with TRAMP-C2 tumors, the spontaneous TRAMP tumors are
multifocal, independently arising in individual glands, and are
heterogeneous masses that are continually progressing to more
malignant phenotypes with time, along with associated changes
in the microenvironment and immune phenotype. (b) Exposure of
the tumor to IL-12: The in situ spontaneous prostate tumors are
enclosed within a well-defined capsule, potentially limiting the
diffusion of IL-12 expressed from NV1042 virus. (c) Less than
optimal dosing of the virus: For this highly aggressive spontaneous

model, it is possible that more frequent dosing may have increased
the differential response between NV1023 and NV1042. (d) Timing
of efficacy measurement: In the implanted tumor models, efficacy
measurements were conducted within a period of 3 to 4 weeks
after treatment as compared with 6 to 12 weeks after treatment in
the spontaneous tumor model. Such variations in response to the
same virus depending on the type of tumor model highlight the
importance of evaluating oncolytic viruses in more than one model
while emphasizing the need to use models such as the TRAMP
mice that are most representative of in situ prostate cancer
development and progression.

We believe that this is the first report of treating a spontaneous
cancer model using systemically administered oncolytic HSVs. We
recently reported the intraneoplastic use of oncolytic HSVs in the
C3(1)/T-Ag model, which develops mammary tumors spontane-
ously (42). Although a direct comparison of NV1023 and NV1042
was not conducted, NV1042 significantly delayed mammary tumor
progression as compared with mock. Data from both these studies
substantiate the utility of NV1042 against spontaneous tumor
models, whether administered intraneoplastically or i.v. An IL-12–
expressing vector may have some advantages over a noncytokine
vector: (a) IL-12 binds to receptors on T cells and natural killer
(NK) cells, which enhances their proliferation and cytotoxicity,
driving a T helper 1 response. It is a central immunoregulator
acting as a cross-bridge between innate and adaptive immunity
(43) so that when expressed at the site of tumor antigen
production, it can boost both arms of the immune response. (b)
An IL-12–expressing oncolytic virus, which can both cause tumor
destruction and deliver an immune-enhancing cytokine in the
vicinity of tumor destruction, would be highly beneficial as
compared with the direct administration of cytokines into the
tumor without sufficient tumor antigens or ‘‘danger signals.’’ (c)
IL-12 also has antiangiogenic properties (44).

Results from multiple studies previously conducted both by us
and other investigators to identify the mode of action of NV0142
have also shown consistently without exception that the virus acts
through immune and antiangiogenic mechanisms. T cells, specif-
ically CD8+ cells, are essential to the antitumor immune response
of the NV1042 virus (17, 23, 38, 45). The role of NK cells seems to
vary with the tumor model used; in the metastatic prostate
TRAMP-C2 lung tumor model, NK cell activity was observed in
mice treated with NV1042 but not NV1023 or virus buffer, whereas
in a colorectal micrometastatic model, NK cell depletion did not

Figure 5. Real-time PCR for HSV gB
sequences in various tissues from TRAMP
mice treated at 18 wk with oncolytic HSVs.
NV1042 (2 � 107 pfu) was administered
systemically on days 0, 3, 7, and 10 in
TRAMP mice at 18 wk of age and various
tissues were harvested on day 11 (n = 2),
day 13 (n = 2), and day 24 (n = 3) for
absolute quantification of gB viral
sequences using TaqMan real-time PCR.
Each column represents one mouse.
The lymph node is the periaortic lymph
node. *, nonquantifiable (1–15 copies). On
day 24, there was a third mouse that only
had nonquantifiable copies in prostate and
periaortic lymph node (not shown in figure).
For the second day 24 mouse, no DNA was
obtained from the lung, including GAPDH.
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interfere with NV1042 efficacy (23, 46). Finally, IL-12 expression by
NV1042 virus leads to substantial antiangiogenic activity as shown
by the decreased vascularity in prostate and head and neck
squamous cell carcinoma models (17, 47).

The current study of systemic HSV treatment in an aggressive
spontaneously developing prostate cancer model advances the
validity of using oncolytic HSV therapy for prostate cancer patients,
especially those with metastatic disease who are severely limited
in their treatment options. Importantly, in our study, treatment was
initiated not just after primary tumors had developed but also after
metastases were apparent, similar to the situation in clinical
practice. Given that human cancer cells (including prostate cancer)
are more susceptible to HSV oncolysis than mouse cells (ref. 14
versus ref. 17), the TRAMP mouse model serves as a stringent test
for efficacy, and it might be expected that the results noted in this
animal model could indicate even further efficacy when tested in
patients. We have shown that systemically administered oncolytic
HSV, in particular the IL-12–expressing NV1042 virus, was effective

not only against the primary tumor but also against metastatic
tumors independent of their location. These desirable therapeutic
features of NV1042 render it a highly valuable agent either as a
primary treatment option or as an adjuvant following surgery
to eliminate micrometastases.
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